
Abstract Classes



2

Abstract Classes

 Java allows abstract classes
 use the modifier abstract on a class header to declare 

an abstract class
abstract class Vehicle

{ … }

 An abstract class is a placeholder in a class 
hierarchy that represents a generic concept

// An example abstract class in Java 

abstract class Shape { 

int color; 

// An abstract function (like a pure 

virtual function in C++) 

abstract void draw(); 

} 



3

Abstract Class: Example

abstract class Base { 

abstract void fun(); 

} 

class Derived extends Base { 

void fun() { System.out.println("Derived fun() called"); 

} 

} 

class Main { 

public static void main(String args[]) { 

// Uncommenting the following line will cause compiler 

error as the 

// line tries to create an instance of abstract class. 

// Base b = new Base(); 

// We can have references of Base type. 

Base b = new Derived(); 

b.fun(); 

} 

} 



4

Abstract Classes

 An abstract class often contains abstract 
methods, though it doesn’t have to
 Abstract methods consist of only methods declarations, 

without any method body

 In Java, we can have an abstract class without any abstract 
method. This allows us to create classes that cannot be 
instantiated, but can only be inherited.

 An abstract class cannot be instantiated

(why?)For any abstract java class we are not 
allowed to create an object

 Abstract classes can also have final methods (methods that 
cannot be overridden)



5

Java Interface

A Java interface is a collection of constants
and abstract methods
 abstract method: a method header without a 

method body; we declare an abstract method 
using the modifier abstract

 since all methods in an interface are abstract, 
the abstract modifier is usually left off

Methods in an interface have public visibility 
by default



6

Interface: Syntax

// A simple interface 

interface Player 

{ 

final int id = 10; 

int move(); 

} 

interface is a reserved word

No method in an

interface has a definition (body)

A semicolon immediately

follows each method header



7

Implementing an Interface

A class formally implements an interface by
 stating so in the class header in the implements

clause

 a class can implement multiple interfaces: the 
interfaces are listed in the implements clause, 
separated by commas

 If a class asserts that it implements an 
interface, it must define all methods in the 
interface or the compiler will produce errors



8

Implementing Interfaces

// An example to show that interfaces can 

// have methods from JDK 1.8 onwards 

interface In1 

{ 

final int a = 10; 

default void display() 

{ 

System.out.println("hello"); 

} 

} 

// A class that implements the interface. 

class TestClass implements In1 

{ 

// Driver Code 

public static void main (String[] args) 

{ 

TestClass t = new TestClass(); 

t.display(); 

} 

} 

implements is a

reserved word

Each method listed

in Doable is

given a definition



9

Interfaces: An Example

import java.io.*; 

// A simple interface 

interface In1 

{ 

// public, static and final 

final int a = 10; 

// public and abstract 

void display(); 

} 

// A class that implements the interface. 

class TestClass implements In1 

{ 

// Implementing the capabilities of 

// interface. 

public void display() 

{ 

System.out.println("Geek"); 

} 

// Driver Code 

public static void main (String[] args) 

{ 

TestClass t = new TestClass(); 

t.display(); 

System.out.println(a); } 

} 



10

Why do we use interface ?

• It is used to achieve total abstraction.

• Since java does not support multiple inheritance 
in case of class, but by using interface it can 
achieve multiple inheritance .

• It is also used to achieve loose coupling.

• Interfaces are used to implement abstraction. So 
the question arises why use interfaces when we 
have abstract classes?



11

More Examples

interface Inf1
{ public void method1(); 
} 
interface Inf2 extends Inf1
{ 
public void method2(); 
} 
public class Demo implements Inf2
{ /* Even though this class is only implementing the * interface Inf2, it has to implement all 
the methods * of Inf1 as well because the interface Inf2 extends Inf1 */
public void method1()
{ 
System.out.println("method1"); 
}
public void method2()
{ 
System.out.println("method2");

} 
public static void main(String args[])
{ I
nf2 obj = new Demo();
obj.method2();
} 
}



12

Interface Hierarchies

 Inheritance can be applied to interfaces as well as 
classes

 One interface can be used as the parent of 
another

 The child interface inherits all abstract methods 
of the parent

 A class implementing the child interface must 
define all methods from both the parent and child 
interfaces

 Note that class hierarchies and interface 
hierarchies are distinct (they do not overlap)


