
Abstract Classes



2

Abstract Classes

 Java allows abstract classes
 use the modifier abstract on a class header to declare 

an abstract class
abstract class Vehicle

{ … }

 An abstract class is a placeholder in a class 
hierarchy that represents a generic concept

// An example abstract class in Java 

abstract class Shape { 

int color; 

// An abstract function (like a pure 

virtual function in C++) 

abstract void draw(); 

} 



3

Abstract Class: Example

abstract class Base { 

abstract void fun(); 

} 

class Derived extends Base { 

void fun() { System.out.println("Derived fun() called"); 

} 

} 

class Main { 

public static void main(String args[]) { 

// Uncommenting the following line will cause compiler 

error as the 

// line tries to create an instance of abstract class. 

// Base b = new Base(); 

// We can have references of Base type. 

Base b = new Derived(); 

b.fun(); 

} 

} 



4

Abstract Classes

 An abstract class often contains abstract 
methods, though it doesn’t have to
 Abstract methods consist of only methods declarations, 

without any method body

 In Java, we can have an abstract class without any abstract 
method. This allows us to create classes that cannot be 
instantiated, but can only be inherited.

 An abstract class cannot be instantiated

(why?)For any abstract java class we are not 
allowed to create an object

 Abstract classes can also have final methods (methods that 
cannot be overridden)



5

Java Interface

A Java interface is a collection of constants
and abstract methods
 abstract method: a method header without a 

method body; we declare an abstract method 
using the modifier abstract

 since all methods in an interface are abstract, 
the abstract modifier is usually left off

Methods in an interface have public visibility 
by default



6

Interface: Syntax

// A simple interface 

interface Player 

{ 

final int id = 10; 

int move(); 

} 

interface is a reserved word

No method in an

interface has a definition (body)

A semicolon immediately

follows each method header



7

Implementing an Interface

A class formally implements an interface by
 stating so in the class header in the implements

clause

 a class can implement multiple interfaces: the 
interfaces are listed in the implements clause, 
separated by commas

 If a class asserts that it implements an 
interface, it must define all methods in the 
interface or the compiler will produce errors



8

Implementing Interfaces

// An example to show that interfaces can 

// have methods from JDK 1.8 onwards 

interface In1 

{ 

final int a = 10; 

default void display() 

{ 

System.out.println("hello"); 

} 

} 

// A class that implements the interface. 

class TestClass implements In1 

{ 

// Driver Code 

public static void main (String[] args) 

{ 

TestClass t = new TestClass(); 

t.display(); 

} 

} 

implements is a

reserved word

Each method listed

in Doable is

given a definition



9

Interfaces: An Example

import java.io.*; 

// A simple interface 

interface In1 

{ 

// public, static and final 

final int a = 10; 

// public and abstract 

void display(); 

} 

// A class that implements the interface. 

class TestClass implements In1 

{ 

// Implementing the capabilities of 

// interface. 

public void display() 

{ 

System.out.println("Geek"); 

} 

// Driver Code 

public static void main (String[] args) 

{ 

TestClass t = new TestClass(); 

t.display(); 

System.out.println(a); } 

} 



10

Why do we use interface ?

• It is used to achieve total abstraction.

• Since java does not support multiple inheritance 
in case of class, but by using interface it can 
achieve multiple inheritance .

• It is also used to achieve loose coupling.

• Interfaces are used to implement abstraction. So 
the question arises why use interfaces when we 
have abstract classes?



11

More Examples

interface Inf1
{ public void method1(); 
} 
interface Inf2 extends Inf1
{ 
public void method2(); 
} 
public class Demo implements Inf2
{ /* Even though this class is only implementing the * interface Inf2, it has to implement all 
the methods * of Inf1 as well because the interface Inf2 extends Inf1 */
public void method1()
{ 
System.out.println("method1"); 
}
public void method2()
{ 
System.out.println("method2");

} 
public static void main(String args[])
{ I
nf2 obj = new Demo();
obj.method2();
} 
}



12

Interface Hierarchies

 Inheritance can be applied to interfaces as well as 
classes

 One interface can be used as the parent of 
another

 The child interface inherits all abstract methods 
of the parent

 A class implementing the child interface must 
define all methods from both the parent and child 
interfaces

 Note that class hierarchies and interface 
hierarchies are distinct (they do not overlap)


